Dynamics of a viscoelastic spherical shell with a nonconvex strain energy function
نویسندگان
چکیده
منابع مشابه
Dynamics of a Viscoelastic Spherical Shell with a Nonconvex Strain Energy Function
We study the radial motion of an incompressible viscoelastic spherical shell with a nonconvex strain energy function that models a material that can undergo a phase transition. In addition to the classical Newtonian viscosity for viscoelastic materials, we consider a material with two microstructural coefficients that are supposed to sense local configurational changes that take place during a ...
متن کاملCasimir Energy of a Spherical Shell
The Casimir energy for a conducting spherical shell of radius a is computed using a direct mode summation approach. An essential ingredient is the implementation of a recently proposed method based on Cauchy's theorem for an evaluation of the eigenfrequencies of the system. It is shown, however, that this earlier calculation uses an improper set of modes to describe the waves exterior to the sp...
متن کاملHamiltonian spacetime dynamics with a spherical null-dust shell
We consider the Hamiltonian dynamics of spherically symmetric Einstein gravity with a thin null-dust shell, under boundary conditions that fix the evolution of the spatial hypersurfaces at the two asymptotically flat infinities of a Kruskal-like manifold. The constraints are eliminated via a Kuchařtype canonical transformation and Hamiltonian reduction. The reduced phase space Γ̃ consists of two...
متن کاملOn the Zero-Point Energy of a Conducting Spherical Shell
The zero-point energy of a conducting spherical shell is evaluated by imposing boundary conditions on the potential Aμ, and on the ghost fields. The scheme requires that temporal and tangential components of Aμ perturbations should vanish at the boundary, jointly with the gauge-averaging functional, first chosen of the Lorenz type. Gauge invariance of such boundary conditions is then obtained p...
متن کاملConducting Spherical Shell with a Circular Orifice
A conducting spherical shell with a circular orifice of half angle θ0 is at electric potential V0. Show that the difference between the charge densities on the inner and outer surfaces is independent of position, and estimate the ratio of the electric charge on the inner surface to that on the outer. Correct results can be inferred from “elementary” arguments based on superposition, and more “e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quarterly of Applied Mathematics
سال: 1998
ISSN: 0033-569X,1552-4485
DOI: 10.1090/qam/1622558